
MENTATION PAGE M.006=
AD.- A233 343 ww N

4.TWLEANQSUTTLE Ada Compiler Validation Summary Report: L IUMNUMERS

MIPS Computer Systems, Inc., MIPS Ada 3.0, MIPS M/2000 (Host) to

MIPS M/2000 (Target), 900619W1.11011

S AUWHOS)

Wright-Patterson AFB, Dayton, OH
USA

7. PEWOdIN ORGANIZaTIO M) AIQAO ES) L PEFOA ORANIZATION

Ada Validation'Facility, Language Control Facility ASD/SCEL RP~ LM

Bldg. 676, Rm 135 AVF-VSR-373 .0191
Wright-Patterson AFB
Dayton, OH 45433

9. UPONOR 0W M7. fl NCYWWM(S)ANDADOSS(ES) 1O.. .- JACY
Ada Joint Program Office MAW IJIR

United States Department of Defense
Washington, D.C. 20301-3081

11. UUPPLE&ENTARY NOTES

1L06. DhUnTIOM'ALLY STATEtiEN 1W. DSTU1nM OOM

Approved for public release; distribution unlimited.

1$. ABSTACT 1Ab~ummtiW w&

MIPS Computer Systems, Inc., MIPS Ada 3.0, Wright-Patterson AFB, OH, MIPS M/2000, RISC

/os 4.50 (Host & Target), ACVC 1.11.

OTIC
ELECTIE
MAR 2 2199153,

id.SflECTTE Ada programming language, Ada Compiler Validation 1.MGRO

Summary Report, Ada Compiler Validation Capability, Validation
Testing, Ada Validation Office, Ada Validation Facility, ANSI/HIL- teP4acNOWN

Q-18A- ,daJoint Program Office
17 QTw If. SECURffY 9"CFAIO 1.U RT LASUFIATION 2 15MMTATION OF ABSTP=C

v u O F T H I A G E 43I T~~cUNCLASSIFIED IUNCLASSIFIED UNCLASSIFIED

91 3 19 124

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 19 June 1990.

Compiler Name and Version: MIPS Ada 3.0

Host Computer System: MIPS M/2000, RISC/os 4.50

Target Computer System: MIPS M/2000, RISC/os 4.50

Customer Agreement Number: 90-03-08-MIP

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
900619W1.11011 is awarded to MIPS Computer Systems, Inc. This certificate
expires on 1 June 1992.

This report has been reviewed and is approved.

Ada Validation Facility

Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

/

' Ada Validatign"Organization
Vl Director.Co puter & Software Engineering Division

i Institute -or Defense Analyses aetiSion For
Alexandria VA 22311 NtIS GRA&I

VTIC TAB
Unannounced on
Justification

Ada joint Program Office By
Dr. John Solomond, Director Distribution/
Department of Defense Avallability Codes
Washington DC 20301 Avaji

Avi -and/or7)T Dist Speilet

3T

AVF Control Number: AVF-VSR-373.0191
24 January 1991

90-03-08-MIP

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 900619W1.11011
MIPS Computer Systems, Inc.

MIPS Ada 3.0
MIPS M/2000 => MIPS M/2000

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT. 1-1
1.2 REFERENCES. 1-2

1.3 ACVC TEST CLASSES 1-2

1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 VITHDRAWNTESTS 2-1

2.2 INAPPLICABLE TESTS. 2-1

2.3 TEST MODIFICATIONS. 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OFTEST RESULTS 3-1
3.3 TEST EXECUTION. 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

*)Mips

Declai'ation of Conformance

Customer: MIP~S Computer Systems, Inc.
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.11

Ada Implementation:

Compiler Name and] Version : MIPS Ada 3.0
H-ost Compuiter System: MIPS M/2000; RISC/os 4.50
Target Compuiter System: MIPS M/2000; RISC/os 4.50

Customer's Declaration

1, the uindersigned, representing MIPS Computer Systems, Inc., declare that MIPS
Compuiter Systems has no knowledge of deliberate deviations from thie Ada
Langagae Standard ANSI/MIL-STD-l1S1A in the implementation listed in this
declaration. I dcclarc that M4IPS Computer Systems, Inc. is the owner of' the above
implementation and the certificates shall be awarded in the name of the owner's cor-
porate name.

A'~~k'Y ~~~ Date:___ ______

Anktir Saha, Ada/ASAPP IDevclopmen t Manager
MIPS Computer Systcms. Inc.
928 Arqties Avenue
Sunnyvale, CA 94086

MIPS Computer Systems, Inc. 928 Arques Avenue Sunnyvale. CA 94086-3650 FAX (408) 720-9809 Tel. (408) 720-1700

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro9O]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89i.

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD- XSAF-e_rur 1983 and ISO 8652-1987.

[Pro9O] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
OHice, August 1990.

[UG891 Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting.compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to estabIish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 18 May 1990.

E28005C B28006C C34006D B41308B C43004A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
B83022B B83022H B83025B B83025D B83026B C83026A
C83041A C97116A C98003B BA2011A CB7001A CB7001B
CB7004A CC1223A BC1226A CC1226B BC3009B ADIB08A
BD2AO2A CD2A21E CD2A23E CD2A32A CD2A41A CD2A41E
CD2A87A CD2B15C BD3006A CD4022A CD4022D CD4024B
CD4024C CD4024D CD4031A CD4051D CD5111A CD7004C
ED7005D CD7005E AD7006A CD7006E AD7201A AD7201E
CD7204B BD8002A BD8004C CD9005A CD9005B CDA2O1E
CE2107I CE2119B CE2205B CE2405A CE3111C CE3118A
CE3411B CE3412B CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 21 tests check for the predefined type LONGINTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45612C C45613C C45614C C45631C C45632C
B52004D C55BO7A B55B09C B86001W C86006C
CD7101F

C35702A, C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONGFLOAT, or SHORTFLOAT.

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAXMANTISSA of 47 or
greater.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types; for this
implementation, MACHINEOVERFLOWS is TRUE.

C86001F recompiles package SYSTEM, making package TEXT 10, and hence
package REPORT, obsolete. For this implementation, the package TEXTIO
is dependent upon package SYSTEM.

B86001Y checks for a predefined fixed-point type other than DURATION.

C96005B checks for values of type DURATION'BASE that are outside the
range of DURATION. There are no such values for this implementation.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

2-2

IMPLEMENTATION DEPENDENCIES

The tests listed in the following table are not applicable because the
given file operations are supported for the given combination of mode
and file access method.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL_10
CE2102E CREATE OUT FILE SEQUENTIAL 10
CE2102F CREATE INOUT FILE DIRECT IO0-
CE2102F CREATE IN FILE DIRECT 10

CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN FILE SEQUENTIAL_10
CE2102P OPEN OUT FILE SEQUENTIALIO
CE21020 RESET OUT-FILE SEQUENTIALIO
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT 10
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET IN-FILE DIRECT-IO
CE2102V OPEN OUT FILE DIRECT-IO
CE2102W RESET OUT-FILE DIRECT 10
CE3102E CREATE IN FILE TEXT 1O
CE3102F RESET Any Mode TEXT-IO
CE3102G DELETE TEXT 10
CE3102I CREATE OUT FILE TEXT-IO
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUT FILE TEXT-IO

CE2203A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for SEQUENTIALIO. This implementation does
not restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT-IO. This implementation does not
restrict file capacity.

CE3304A checks that USE ERROR is raised if a call to SET LINE LENGTH or
SET PAGE LENGTH specifies a value that is inappropriate Tor the external
file. THis implementation does not have inappropriate values for either
line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST. For this implementation, the value of
COUNT'LAST is greater than 150000 making the checking of this objective
impractical.

2-3

IMPLEMENTATION DEPENDENCIES

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 13 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B24009A B33301B B38003A B38003B B38009A B38009B
B85008G B85008H BC1303F BC3005B BD2BO3A BD2DO3A
BD4003A

2-4

CHAPTER 3

PROCESSING INFORMAlON

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Ankur Saha
MIPS Computer Systems, Inc.
950 DeGuigne Drive
Sunnyvale CA 94086

For a point of contact for sales information about this Ada implementation
system, see:

Jean Wood
MIPS Computer Systems, Inc.
950 DeGuigne Drive
Sunnyvale CA 94086

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3826
b) Total Number of Withdrawn Tests 71
c) Processed Inapplicable Tests 72
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 273 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

All I/O tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in section 2.1 had been withdrawn because of test
errors. The AVF determined that 273 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation
testing except for 201 executable tests that use floating-point precision
exceeding that supported by the implementation. In addition, the modified
tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded onto a system equipped with a 9-track tape
driver, and the tests were then copied via NFS to the host machine.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option Effect

-02 Invoke full optimization for Ada.

-Olimit num Specify the maximum size, in basic blocks,
of a routine that will be optimized by the
global optimizer. If a routine has more
than this number of basic blocks, it will
not be optimized, and a message will be

3-2

PROCESSING INFORMATION

printed. An option specifying that the
global optimizer is to be run (-0, -02, or
-03) must also be specified. num is assumed
to be a decimal number. The default value
for num is 500 basic blocks.
For ACVC 1.11 validation, -Olimit 1500 is
applied to ensure that all tests are optimized.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89J. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$BIGIDi (1..V-1 => 'A', V => '1')

$BIGID2 (1..V-1 => 'A', V => '2')

$BIGID3 (1..V/2 => 'A') & '3' &
(l..V-1-V/2 => 'A')

$BIGID4 (1..V/2 => 'A') & '4' &
(1..V-1-V/2 => 'A')

$BIGINTLIT (1..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 => '0') & "690.0"

$BIGSTRING1 ,", & (1..V/2 -> 'A') & I"I

$BIGSTRING2 '"' & (l..V-1-V/2 -> 'A') & '1' & '"'

$BLANKS (1..V-20 => '

$MAXLENINTBASEDLITERAL
"2:" & (1..V-5 => '0') & "11:"

$MAXLENREALBASEDLITERAL
"16:" & (1..V-7 => '0') & "F.E:"

$MAXSTRINGLITERAL '"' & (1..V-2 -> 'A') & '"'

A-1

MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$MAX IN LEN 499

$ACCSIZE 32

$ALIGNMENT 4

$COUNTLAST 2_147_483_647

$DEFAULTKEMSIZE 16_777_216

$DEFAULTSTORUNIT 8

$DEFAULTSYSNAME RISCOS

$DELTADOC 0. 0000000004656612873077392578125

$ENTRYADDRESS SYSTEM."+"(16)

$ENTRYADDRESS1 SYSTEM."+"(17)

$ENTRYADDRESS2 SYSTEM."1+"(2)

$FIELDLAST 2_147_483_647

$FILETERMINATOR 10

$FIXEDNAKiE NOSUCHFIXED TYPE

$FLOATNAME NOSUCHTYPE

$FORMSTRING

$FORMSTRING2 "CANNOTRESTRICTFILECAPACITY"I

$GREATER THAN DURATION 100.

$GREATERTHANDURATION BASE LAST
1oOO5000.0

$GREATERTHANFLOATBASE LAST
1.UE+308

$GREATERTHANFLOATSAFE LARGE
5.UE307

$GREATERTHANSHORTFLOATSAFELARGE

A-2

MACRO PARAMETERS

9. 0E37

$HIGHPRIORITY 99

$ILLEGALETERAL-FILE NAMEl
"l/illegal/file riane/2(J$%2102C.DAT"

$ILLEGALEXTERAL-FILE NAME2
"l/illegal/file name/CE21O2C* .DAT"

$INAPPROPRIATELINELENGTH
-1

$INAPPROPRIATEPAGELENGTH
-1

$INCLUDE PRAGMA1 PRAGMA INCLUDE ("IA28006D . TST")

$INCLUDEPRAGMA2 PRAGRIA INCLUDE ("IB28006F1.TST"l)

$INTEGERFIRST -2_147_483_648

SINTEGERLAST 2_147_483_647

$INTEGERLASTPLUS_1 2_147_483_648

$INTERFACELANGUAGE C

$LESSTHANDURATION -100000.0

$LESSTHANDURATIONBASE FIRST
46U000_000.0

$LINETERMINATOR ASCII.LF

$LOW-PRIORITY 0

$MACHINECODESTATEMENT
CODE 0' (OP.>NOP)

$MACHINECODETYPE CODE 0

$MANTISSADOC 31

$MAXDIGITS 15

$MAXINT 2147483647

$MAXINTPLUS_1 2_147_483_648

$MININT -2147483648

$NAME TINY-INTEGER

A-3

MACRO PARAMETERS

$NAME-LIST RISCOS

$NAMESPECIFICATIONi /usr/valid/11/c/e/x2l20a

$NAMESPECIFICATION2 /usr/valid/11/c/e/x2l20b

$NAMESPECIFICATION3 /usr/valid/11/c/e/X3119a

$NEGBASEDINT 16#FFFFFFFD#

$NEVHEMSIZE 16_777_216

$NEWSTORUNIT 8

$NEW-SYSNAME RISCOS

$PAGETERMINATOR ASCII.LF & ASCII.FF

$RECORD-DEFINITION RECORD NULL; END RECORD;

$RECORD-NAME NOSUCHMACHINECODETYPE

$TASKSIZE 32

$TASKSTORAGESIZE 1024

$TICK 0.01

$VARIABLEADDRESS VAR_1ADDRESS

$VARIABLEADDRESS1 VAR_2'ADDRESS

$VARIABLE ADDRESS2 VAR 3'ADDRESS

$YOURPRAGMA PASSIVE

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler and linker options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

ada

Ada compiler

Syntax

ada [options] [source_file]... [linker_options] [object_file.o]...

Options

-1 identifier type value (define) Define an identifier of a
specified type and value. See Chapter 10, VADS ADA
PREPROCESSOR REFERENCE.

-a file name (archive) Treat file name as an object
archive file created by ar. Since some archive files end
with .a, -a is used to distinguish archive files from Ada
source files.

-d (dependencies) Analyze for dependencies only. Do not do
semantic analysis or code generation. Update the library,
marking any defined units as uncompiled. The -d option is
used by a.make to establish dependencies among new files.

-e (error) Process compilation error messages using a.error
and send it to standard output. Only the source lines
containing errors are listed. Only one -e or -E option
should be used.

-E
-E file

B-1

COMPILATION SYSTEM OPTIONS

-Z directory (error output) Without a file or directory
argument, ada processes error messages using a.error and
directs a brief output to standard output; the raw error
messages are left in ada source.err. If a file pathname is
given, the raw error messages are placed in that file. If a
directory argument is supplied, the raw error output is
placed in dir/source.err. The file of raw error messages can be
used as input to a.error. Only one -e or -E option should be used.

-el (error listing) Intersperse error messages among source
lines and direct to standard output.

-El
-El file
-El directory (error listing) Same as the -E option, except
that source listing with errors is produced.

-ev (error vi(1)) Process syntax error messages using
a.error, embed them in the source file, and call the
environment editor ERROR EDITOR. (If ERROR EDITOR is
defined, the environment variable ERROR PATTERN should also
be defined. ERROR PATTERN is an editor search command that
locates the first occurrence of '###' in the error file.) If
no editor is specified, vi(l) is invoked.

-G Num Specify the maximum size, in bytes, of a data
item that is to be accessed from the global pointer.
Num is assigned to be a decimal number. If Num is zero,
no data is accessed from the global pointer.
The default value for Num is 8 bytes.

-g Have the compiler produce additional symbol table
information for full symbolic-debugging and not do
optimizations that limit full symbolic debugging.
The default is to allow optimizations that may
make the debugger inaccurate.

-inline Use auto-inlining.

-K (keep) Keep the intermediate language (IL) file
produced by the compiler front end. The IL file will be
placed in the .objects directory, with the file name Ada source.i

-L library_name (library) Operate in VADS library
libraryname (the current working directory is the default).

-lfile abbreviation (library search) This is an option
passed-to the UNIX linker, ld(1) telling it to search the
specified library file. (No space between the -1 and the
file abbreviation.)
For a description of the file abbreviations, see also
Operating System documentation, ld(1).

B-2

COMPILATION SYSTEM OPTIONS

-M unit name (main) Produce an executable program by
linking the named unit as the main program. unit name must
already be compiled. It must be either a parameterless
procedure or a parameterless function returning an integer.
The executable program will be named a.out unless overridden
with the -o option.

-M source file (main) Produce an executable program by
compilingand linking source file. The main unit of the
program is assumed to be the-root name of the .a file (for
foo.a the unit is foo). Only one .a file may be preceded by
-M. The executable program will be named a.out unless
overridden with the -o option.

-o executable file (output) This option is to be used in
conjunction with the -M option. executable file is the name
of the executable rather than the default a.out.

-0[0-21 (optimize) Invoke the code optimization. An
optional digit (there is no space before the digit) provides
the level of optimization. The default is -02.

-O full optimization
-00 prevents optimization
-01 low level optimization
-02 full optimization

For more information about optimization, see COMPILING ADA
PROGRAMS, Compiler Optimizations. See also pragma OPTIMIZECODE(OFF)

-P Invoke the Ada Preprocessor. See Chapter VADS ADA
PREPROCESSOR REFERENCE.

-p (profile) Pass profiling flag to a.ld.
Note: profiling does not work on programs that use tasks.

-R VADS library (recompile instantiation) Force analysis
of all generic instantiations, causing reinstantiation of
any that are out of date.

-S (suppress) Apply pragma SUPPRESS to the entire
compilation for all suppressible checks. See also pragma
SUPPRESS(ALLCHECKS).

-sh (show) Display the name of the tool executable but do
not execute it.

-T (timing) Print timing information for the compilation.

-v (verbose) Print compiler version number, date and time
of compilation, name of file compiled, command input line,
total compilation time, and error summary line. Storage
usage information about the object file is provided. With

B-3

COMPILATION SYSTEM OPTIONS

OPTIM3, the output format of compression (the size of
optimized instructions) is as a percentage of input
(unoptimized instructions).

-Wc,argl.[arg2...] Pass the argument[s] agri to a compiler
pass, where c is one of the characters in the next table
that designates the pass.

Pass Character

optim3 v
include h
backend driver D
ucgen G
ujoin j
uld u
usplit s
umesrge m
uopt 0
ugen c
asl b

-w (warnings) Suppress warning diagnostics.

Description

The command ada executes the Ada compiler and compiles the
named Ada source file, ending with the .a suffix. The file
must reside in a VADS library directory. The ada.lib file in
this directory is modified after each Ada unit is compiled.

By default, ada produces only object and net files. If the
-M option is used, the compiler automatically invokes a.ld
and builds a complete program with the named library unit as
the main program.

Non-Ada object files (.o files produced by a compiler for
another language) may be given as arguments to ada. These
files will be passed on to the linker and will be linked
with the specified Ada object files.

Command line options may be specified in any order, but the
order of compilation and the order of the files to be passed
to the linker can be significant.

Several VADS compilers may be simultaneously available on a
single system. Because the ada command in any
VADS location/bin on a system will execute the correct
compiler components based upon visible library directives,
the option -sh is provided to print the name of the
components actually executed.

Program listings with a disassembly of machine code

B-4

COMPILATION SYSTEM OPTIONS

instructions are generated by a.db or a.das.

See also a.das; a.db; a.error; a.ld; a.mklib, and Operating

System reference documentation for the ld(1) utility.

Diagnostics

The diagnostics produced by the VADS compiler are intended
to be self-explanatory. Most refer to the RM. Each RM reference
includes a section number and, optionally, a paragraph number
enclosed in parentheses.

B-5

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type TINY JNTEGER is range .128 .. 127;

type FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;
type LONG FLOAT is digits 15

rangie -1.79769313486232E+308 .. 1.79769313486232E+308;

type DURATION is delta 0.001 range -2147483.648 .. 2147483.647;
..........

end STANDARD;

C-I

APPENDIX F OF THE Ada STANDARD

ATTACHMENT I

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas

1.1. INLINEONLY Pragma

The INLINE ONLY pragma, when used in the same way as pragma
INLINE, indicates to the compiler that the subprogram must
always be inlined. This pragma also suppresses the genera-
tion of a callable version of the routine which saves code
space.

1.2. BUILTIN Pragma

The BUILT IN pragma is used In the implementation of some
predefineU Ada packages, but provides no user access. It is
used only to implement code bodies for which no actual Ada
body can be provided.

1.3. SHARECODE Pragma

The SHARE CODE pragma takes the name of a generic instantia-
tion or a generic unit as the first argument and one of the
identifiers TRUE or FALSE as the second argument. This
pragma is only allowed immediately at the place of a
declarative item in a declarative part or package specifica-
tion, or after a library unit in a compilation, but before
any subsequent compilation unit.

'hen the first argument is a generic unit, the pragma applies
to all instantiations of that generic. When the first argu-
ment is the name of a generic instantiation, the pragma
applies only to the specified instantiation, or overloaded
instantiations.

If the second argument is TRUE, the compiler will try to
share code generated for a generic instantiation with code
generated for other instantiations of the same generic.
When the second argument is FALSE, each instantiation will

C-2

APPENDIX F OF THE Ada STANDARD

get a unique copy of the generated code. The extent to
which code is shared between instantiations depends on this
pragma and the kind of generic formal parameters declared
for the generic unit.

The name pragma SHARE BODY is also recognized by the imple-
mentation and has ihe same effect as SHARE CODE. It is
included for compatibility with earlier versions of MIPS
VADS.

1.4. NOIMAGE Pragma

The pragma suppresses the generation of the image array used
for the IMAGE attribute of enumeration types. This elim-
inates the overhead required to store the array in the exe-
cutable image. An attempt to use the IMAGE attribute on a
type whose image array has been suppressed, will result in a
compilation warning and Programerror raised at runtime.

1.5. EXTERNALNAME Pragma

The EXTERNAL NAME pragma takes the name of a subprogram or
variable delined in Ada and allows the user to specify a
different external name that may be used to reference the
entity from other languages. The pragma is allowed at the
place of a declarative item in a package specification and
must apply to an object declared earlier in the same package
specification.

1.6. INTERFACE OBJECT Pragma

The INTERFACE OBJECT pragma takes the name of a variable
defined in another language and allows it to be referenced
directly in Ada. The pragma will replace all occurrences of
the variable name with an external reference to the second,
link argument. The pragma is allowed at the place of a
declarative item in a package specification and must apply
to an object declared earlier in the same package specifica-
tion. The object must be declared as a scalar or an access
type. The object cannot be any of the following:

a loop variable,
a constant,
an initialized variable,
an array, or
a record.

1.7. IMPLICITCODE Pragma

Takes one of the identifiers ON or OFF as the single argu-
ment. This pragma is only allowed within a machine code
procedure. It specifies that implicit code generated by the

C-3

APPENDIX F OF THE Ada STANDARD

compiler be allowed or disallowed. A warning is issued if
OFF is used and any implicit code needs to be generated.
The default is ON.

2. Implementation of Predefined Pragmas

2.1. CONTROLLED

This pragma is recognized by the implementation but has no
effect.

2.2. ELABORATE

This pragma is implemented as described in Appendix B of the
Ada RM.

2.3. INLINE

This pragma is implemented as described in Appendix B of the
Ada RM.

2.4. INTERFACE

This pragma supports calls to 'C' and FORTRAN functions. The
Ada subprograms can be either functions or procedures. The
types of parameters and the result type for functions must
be scalar, access, or the predefined type ADDRESS in SYSTEM.
All parameters must have mode IN. Record and array objects
can be passed by reference using the ADDRESS attribute.

2.5. LIST

This pragma is implemented as described in Appendix B of the
Ada RM.

2.6. MEMORY SIZE

This pragma is recognized by the implementation. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas; the SYSTEM package must be recompiled.

2.7. NOTELABORATED

This pragma can only appear in a library package specifica-
tion. It indicates that the package will not be elaborated
because it is either part of the RTS, a configuration pack-
age, or an Ada package that is referenced from a language
other than Ada. The presence of this pragma suppresses the
generation of elaboration code and issues warnings if ela-
boration code is required.

C-4

APPENDIX F OF THE Ada STANDARD

2.8. OPTIMIZE

This pragma is recognized by the implementation but has no
effect.

2.9. PACK

This pragma will cause the compiler to choose a non-aligned
representation for composite types. It vill not cause
objects to be packed at the bit level.

2.10. PAGE

This pragma is implemented as described in Appendix B of the
Ada RM.

2.11. PRIORITY

This pragma is implemented as described in Appendix B of the
Ada RM.

2.12. SHARED

This pragma is recognized by the implementation but has no
effect.

2.13. STORAGE UNIT

This pragma is recognized by the implementation. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas; the SYSTEM package must be recompiled.

2.14. SUPPRESS

This pragma is implemented as described, except that
RANGECHECK and DIVISION-CHECK cannot be suppressed.

2.15. SYSTEMNAME

This pragma is recognized by the implementation. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas; the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes

3.1. P'REF

This attribute can be used to convert an integer to an
address.

4. Specification of Package SYSTEM

C-5

APPENDIX F OF THE Ada STANDARD

vi th UNSIGNED TYPES;
package SYSTEM is

pragma suppress(ALL CHECKS);
pragma suppress(EXCEPTIONTABLES);
pragma not-elaborated;

type NAME is (RISCos);

SYSTEM NAME : constant NAME :- RISCos;

STORAGE UNIT : constant :- 8;
MEMORY SIZE : constant :- 16 777 216;

-- System-Dependent Named Numbers

MIN INT : constant : -2 147 483 648;
MAX-INT : constant : 2 147 W83 '47;
MAXDIGITS : constant : 13;
MAX-MANTISSA : constant : 31;
FINE DELTA : constant :2.0*(-31);
TICK- : constant : 0.01;

-- Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0 .. 99;

MAX REC SIZE : integer :- 64*1024;

type ADDRESS is private;

function ">" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function ">."(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<."(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "-" (A: ADDRESS; B: ADDRESS) return INTEGER;
function "+" (A: ADDRESS; I: INTEGER) return ADDRESS;
function "-" (A: ADDRESS; I: INTEGER) return ADDRESS;

function "+" (I: UNSIGNEDTYPES.UNSIGNED INTEGER) return ADDRESS;

function MEMORY ADDRESS
(I: UNS!GNEDTYPES.UNSIGNEDINTEGER) return ADDRESS renames "+";

NOADDR : constant ADDRESS;

type TASK ID is private;
NO TASK I6 : constant TASKID;

type PROGRAM ID is private;
NO PROGRAM ID : constant PROGRAMID;

C-6

APPENDIX F OF TRE Ada STANDARD

private

type ADDRESS is new UNSIGNEDTYPES.UNSIGNEDINTEGER;

NO ADDR : constant ADDRESS := 0;

pragma BUILT IN(">");
pragma BUILT7IN("<");
pragma BUILT IN(">-");
pragma BUILT-IN("<.");
pragma BUILT-IN("-");
pragma BUILTIN("+");

type TASK ID is new UNSIGNED_TYPES.UNSIGNEDINTEGER;
NO TASK ID : constant TASK ID :- 0;

type PROGRAM ID is new UNSIGNED TYPES.UNSIGNEDINTEGER;
NO PROGRAM ID : constant PROGRAM ID :- 0;

end SYSTEM;

5. Restrictions on Representation Clauses

5.1. Pragma PACK

In the absence of pragma PACK, record components are padded
so as to provide for efficient access by the target
hardware; pragma PACK applied to a record eliminates the pad-
ding where possible. Pragma PACK has no other effect on the
storage allocated for record components for which a record
representation is required.

5.2. Record Representation Clauses

For scalar types, a representation clause will pack to the
number of bits required to represent the range of the sub-
type. A record representation applied to a composite type
will not cause the object to be packed to fit in the space
required. An explicit representation clause must be given
for the component type. An error will be issued if there is
insufficient space allocated.

5.3. Address Clauses

Address clauses are supported for variables and constants
that have no initial values in their declaration.

5.4. Interrupts

Interrupt entries are supported through signals.

C-?

4

APPENDIX F OF THE Ada STANDARD

5.5. Representation Attributes

The ADDRESS attribute is supported for the following enti-
ties, but a meaningless value is returned.

Packages
Tasks
Labels
Entries

6. Conventions for Implementation-generated Names

There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses

Address clauses are supported for constants and variables.

8. Restrictions on Unchecked Conversions

None.

9. Restrictions on Unchecked Deallocations

None.

10. Implementation Characteristics of I/0 Packages

Instantiations of DIRECT 10 use the value MAX REC SIZE as
the record size (expressed in STORAGE UNITS) When-the size
of ELEMENT TYPE exceeds that value. For-example for uncon-
strained arrays such as string, where ELEMENT TYPE'SIZE is
very large, MAX REC SIZE is used instead. MAX RECORD SIZE
is defined in IYSTIM and can be changed by a program before
instantiating DIRECT 10 to provide an upper limit on the
record size. In any case, the maximum size supported is 1024
x 1024 x STORAGE UNIT bits. DIRECT 10 will raise USE ERROR
if MAXREC SIZE ixceeds this absolute limit.

Instantiations of SEQUENTIAL 10 use the value MAX REC SIZE
as the record size (expriessed in STORAGE UNITS)-vhen the
size of ELEMENT TYPE exceeds that value. For example, for
unconstrained arrays such as string, where ELEMENT TYPE'SIZE
is very large, MAX REC SIZE is used -instead.
MAX RECORD SIZE is definea in-SYSTEM and can be changed by a
program belore instantiating INTEGER 10 to provide an upper
limit on the record size. SEQUENTIAL I0 imposes no limit on
MAX EC SIZE.

C-8

Sb

APPENDIX F OF THE Ada STANDARD

11. Implementation Limits

The folloving limits are actually enforced by the implemen-
tation. It is not intended to imply that resources up to or
even near these limits are available to every program.

11.1. Line Length

The implementation supports a maximum line length of 500

characters including the end of line character.

11.2. Record and Array Sizes

The maximum size of a statically sized array type is
24,000,000 x STORAGE UNITS. The maximum size of a stati-
cally sized record type is 24,000,000 x STORAGE UNITS. A
record type or array type declaration that exceeds these
limits rill generate a warning message.

11.3. Default Stack Size for Tasks

In the absence of an explicit STORAGE SIZE length specifica-
tion, every task except the main program is allocated a fixed
size stack of 10,240 STORAGE UNITS. This is the value
returned by T'STORAGE SIZE for i task type T.

11.4. Default Collection Size

In the absence of an explicit STORAGE SIZE length attribute,
the default collection size for an access type is 100 times
the size of the designated type. This is the value returned
by T'STORAGE SIZE for an access type T.

11.5. Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE UNITS for
objects declared statically vithin a compilation unit. If
this value is exceeded, the compiler will terminate the com-
pilation of the unit vith a FATAL error message.

C-9

